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Abstract 

One of the assumptions of the multiple linear regression model is that there is no exact linear 
relationship between any of the independent variables. If such a linear relationship does exist, 
it can be said that the independent variables are collinear or multicollinearity.  

When collinearity exists among the regressors, a variety of interrelated problems are 
created. Specially, in the model building process collinearity causes high variance for 
parameters if ordinary least squares estimator (OLSE) is used. The main objective of this 
research paper is to analyze and detect the collinearity in the data set and recommend some 
important dealing methods for collinearity problems. Two collinearity data sets are used to 
illustrate the methodologies proposed in this research paper. The first data set was generated 
using Monte Carlo Simulation method with the highest correlation between the regressors and 
this data set contains five regressors and a response variable. The second data set is also a 
real collinearity data set of Macroeconomic Impact of Foreign Direct Investment in Sri Lanka 
form 1978 to 2004 and it contains four regressor and one response variables.    

 

Keywords: Collinearity; Correlation Matrix; Eigen Analysis; Variance Inflation Factor; 
Conditional Indices; Variance Decomposition; Biased Estimation. 
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Introduction 

In many situations both experimental and non-
experimental, the regressors tend to be 
correlated. Then collinearity or collinearity 
exists among the regressors. A variety of 
interrelated problems are created when 
collinearity presents. Specially, in the model 
building process collinearity causes high 
variance for parameters if OLSE is used.  

Unfortunately in most applications of 
regression analysis, the regressors are not 
orthogonal. Sometimes the lack of orthogonal 
is not serious. However, in some situations the 
regressors are nearly perfectly linearly related 
and in such cases the inferences based on the 
regression model can be misleading or 
erroneous. When there are near linear 
dependences between the regressors, the 
problem of collinearity is said to be exist. 

The collinearity is a form of ill-
conditioning in the X'X matrix. Furthermore 
the problem is one of degree; that is, every data 
set will suffer from collinearity to some extent 
unless the columns of X are orthogonal. As we 
can see, the presence of collinearity can make 
the usual OLS analysis of the regression model 
dramatically inadequate (See: Montgomery 
and Peck 1992; Quirino 2001; Draper and 
Smith 1998; Allen 1974; Afifi and Clark 
1996). 

This paper is composed into six sections. 
Section 2 derives the affects of collinearity. 
Section 3 describes the collinearity diagnostics. 
Section 4explains the methods for dealing with 
collinearity. In section 5, two data sets are 

analyzed for numerical illustrations. Comments 
are given in the last section. 

Affects of Collinearity 

Affects of Collinearity in OLSE  

The presence of collinearity has a number of 
potentially serious affects on the OLS-
estimates of the regression coefficients.Some 
of these effects may be easily demonstrated. 
Suppose that there are only two regressor 
variables, X1 and X2. The model, assuming that 
X1, X2 and Y, are scaled to unit length, then 
regression model is 

,2211 XXY    (1) 

and the OLS normal matrix equation is: 

YXXX ')'( 1 , where X is an n 2 matrix,  

is a 2 1 unknown vector and Y is an n 1 
vector. 

   The estimates of the regression coefficients 
are  
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where r12 is the simple correlation between X1 
and X2 and riy is the correlation between Xi and 
Y, i = 1, 2. 

If there is strong collinearity between X1 
and X2, then the correlation coefficient r12 will 
be large. From equation (2) we can say that, 
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whether r12 closed to positive one (+1) or 
negative one (-1). Therefore strong 
collinearitybetween X1 and X2 results in large 
variance and covariance for the OLSE of the 
regression coefficients. This implies that 
different samples taken at the same X levels 
could lead to widely different estimates of the 
model parameters. 

When there are more than two regressor 
variables, collinearity produces similar effects. 
It can be shown that the diagonal elements of 
the C=(X'X)-1 matrix are  

,
)1(

1
2
j

jj R
C   (3) 

where 2
jR  is the coefficient of multiple 

determination from the regression of Xj on the 
remaining p-1 regressor variables. If there is 
strong collinearity between Xj and any subset 
of the other (p-1) regressors, then the value of 

2
jR  will be close to unity. Since the variance of 

j  is ,)1()( 2122
jjjj RCVar  strong 

collinearity implies that the variance of the 
least squares estimate of the regression 

coefficient j  is very large. Generally the 

covariance of i  and j  will also be large if 

the regressorsxi and xj are involved in a 
collinearity relationship. 

Indications of Collinearity 

An estimated model with high standard errors 
and low t statistics could be indicative of 
collinearity, but it could alternative suggest 

that the underlying model is a poor one. One 
can test the following methods to detect the 
presence of collinearity in the data. 

1. A relatively high R2 in an equation with 
few significant t-statistics is one indicator 
of collinearity. In fact, it is possible that 
the F-statistic for the regression equation 
will be highly significant, while none of 
the individual t-statistics are themselves 
significant.  

2. Relatively high simple correlation between 
the regressors may indicate collinearity. 

3. A number of formal tests for collinearity 
have been proposed; here some useful 
methods are suggested and the popular 
methods are: Examination of the 
Correlation Matrix, Variance Inflation 
Factor (VIF) and Eigen Analysis of X'X. 

 

Collinearity Diagnostics 

Several techniques have been proposed for 
detecting collinearity. Here some important 
and useful diagnostics measures are discussed. 
Desirable characteristics of a diagnostics 
procedure are that it directly reflect the degree 
of the collinearity problem and provide 
information helpful in determining which 
regressors are involved. 

Examination of the Correlation Matrix 

A very simple measure of collinearity is 
inspection of the off-diagonal elements rij in 
X'X matrix, when regressors are standardized 
into unit length scaling system. If regressorsxi 
and xj are nearly linearly dependent, then |rij| 
will be near unity, where rij is the correlation 
between xi and xj. 
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Variance Inflation Factor (VIF) Analysis  

The diagonal elements of the C = (X'X)-1 
matrix are very useful in detecting collinearity. 
Recall from (3) that Cjj, the jth diagonal 
element of C, can be written as Cjj = (1-Rj

2)-1. 
If xj is nearly orthogonal to the remaining 
regressors, Rj

2 is small and Cjj is close to unity, 
while if xj is nearly linearly dependent on some 
subject of the remaining regressors, Rj

2 is near 
unity and Cjj is large. 

Since the variance of the jth regression 
coefficients is Cjj

2. It can be viewed Cjj as the 

factor by which the variance of j  is increased 

due to near linear dependencies among the 
regressors. 

The diagonal elements of the C = (X'X)-1 
matrix is called VIF, this terminology is due to 
Marquardt (1970). The jthVIFj is 

12 )1( jjjj RCVIF .  (4) 

The VIF for each term in the model measures 
the combined effect of the dependencies 
among the regressors on the variance of that 
term. One or more large VIFs indicate 
collinearity among the regressors. Practical 
experience indicates that if any of the VIFs 
exceeds 5 or 10, it is an indication that the 
associated regression coefficients are poorly 
estimated because of collinearity. 

Eigensystem Analysis of X'X 

The characteristic root or eigenvalues of X'X 
say 1, 2 p, can be used to measure the 
extent of collinearity in the data. If there are 
one or more near linear dependencies in the 

data, then one or more of the characteristic 
roots will be small. The condition number of 
X'Xis defined as 

.
min

maxK    (5) 

Generally if the condition number K<100, 
there is no serious problem with collinearity. If 
100<K<1000 imply moderate to strong 
collinearity, and if K>1000, severe collinearity 
is indicated. 

Eigensystem analysis can also be used to 
identify the nature of the near linear 
dependencies in the data. The X'X matrix may 
be decomposed as 

X'X=T T',   (6) 

where  is a p p diagonal matrix whose main 
diagonal elements are the eigenvalues j (j=1, 

X'X and T is a p p orthogonal matrix 
whose columns are the eigenvectors of X'X. 
Let the column of T be denoted by t1 tp. If 
the eigenvalue j is close to zero, indicating a 
near linear dependency in the data, the 
elements of the associated eigenvector tj 
describe the nature of this linear dependency. 
Specifically the elements of the vector tj are 
the coefficients t1 p.  

Belsey, Kuh, and Welsch, (1980) propose 
a similar approach for diagnosing collinearity. 
The n p X matrix may be decomposed as 

X=UDT'   (7) 

whereU is an n p, U'U = I, T'T = I, and D is a 
p p diagonal matrix with nonnegative diagonal 
elements µj , p. The µj are called the 
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singular-values of X and X = UDT' is called 
the singular-value-decomposition of X. The 
singular-value decomposition is closely related 
to the concepts of eigenvalues and 
eigenvectors, since X'X = (UDT')'(UDT') 
=TD2T' = T T', so that the squares of the 
singular values of X are the eigenvalues of 
X'X. Here T is the matrix of eigenvectors of 
X'X defined earlier, and U is a matrix whose 
column are the eigenvectors of associated with 
the p nonzero eigenvalues of XX'. 

Ill-conditioning in X is reflected in the size 
of the singular values. There will be one small 
singular value for each near linear dependency. 
The extent of ill-conditioning depends on how 
small the singular value is relative to the 
maximum singular value µmax. Belsey, Kuh, 
and Welsch, (1980) define the condition-

indices of the X matrix as 
j

j
max , j 

 

The covariance matrix of  is 

')'()( 1212 TTXXVar  (8) 

and the variance of the jth regression coefficient 
is the diagonal element of this matrix, or 
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. Clearly one or more 

small singular values (or small eigenvalues) 

can dramatically inflate the variance of j . 

Belsey, Kuh, and Welsch, (1980) suggest using 
variance- decomposition proportions, defined 

as ij ,
/ 22

i

iji

VIF
t

  p, as measures of 

collinearity. Suppose, if 32 and 34 are large, 
the third singular value is associated with a 

collinearity that is inflating the variances of 2  

and .4 The variance-decomposition 

proportions greater than 0.5 is recommended 
guidelines for collinearity. 

 

Methods for Dealing with Collinearity 

Several statistical techniques have been 
proposed for dealing with the problems caused 
by collinearity. Some important methods are: 
(i) Collecting additional data, (ii) Model 
respecification and (iii) The use of estimation 
methods other than least squares that are 
specifically designed to combat the problems 
induced by collinearity that is called biased 
estimation technique. 

Biased Estimation Technique  

When collinearity presents among regressors 
the biased estimates are more reliable than 
OLS estimates in that they have smaller mean 
square error. This means that on average they 
will come closer to estimating the true model 
parameters than the OLS-estimates. Because of 
this property, biased estimation often applied 
to problems where there is a large amount of 
collinearity among the predictor variables and 
the OLS-estimates are unstable.  
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The ridge regression estimator (RRE) 
was originally introduced by Hoerl (1964) and 
Hoerl and Kennard (1970a, b) is given by 

YXIXX ')'( 1kR ,  (9) 

where k>0 is the ridge estimator biasing 
parameter. It is a biasedestimator, however, the 
variances of its elements are lessthan the 
variance of the corresponding elements of the 
OLSE forsuitable k. By accepting some bias to 
reduce variance, the meansquared error (MSE) 
might thus be improved. 

In this research paper biased estimator 
ordinary ridge regression is used to fit multiple 
linear regression model for the collinearity data 
and the stochastic properties of ridge 
regression is compared with OLSE stochastic 
properties.    

Stochastic Properties Analysis 

The following stochastic properties of OLSE 
and RRE important and useful to compare and 
select the suitable estimator. 

(a) Standard error of the parameters 
(b) 95% confidence interval (CI) for 

parameters 
(c) Mean squared error of the model 
(d) Co-efficient of determination of the 

model 
(e) The scalar mean squared error of the 

parameter vector 
(f) Mean squared error matrix of the 

parameters 

Numerical Illustrations and Results  

The Monte Carlo Simulation Data Set 

To analyze collinearity problem five 
independent and one dependent variables are 
generated by using the method of Monte Carlo 
Simulation. One hundred observations are 
generated for each variable. 

In this paper, McDonald, and Galarneau, 
(1975) method is used to generate Monte Carlo 
simulation random variables (data) and the 
procedure is given below: 

6
2/12 )1( iijij ZZX , 6

2/12 )1( iii ZZY

 

whereZij, is independent standard normal 
pseudo-random numbers and 2 is correlation 
between any two explanatory variables and  = 
0.99. These variables are then standardized so 
that X'X is in a correlation form. 

 The estimated Durbin-Watson value for 
this data set is 2.1788. The critical lower (dl) 
and upper (du) values at 1% significance level 
is dl = 1.44 and du = 1.65 (for sample size 100 
and regressors 5), respectively. The estimated 
value for this model lies between du and 4-du, 
hence, it can be conformed that at the 1% level 
of significance there is no autocorrelation. 

Collinearity results and analysis for Monte 
Carlo Simulation Data 

(a) Correlation Analysis: The generated 
variables are standardized into unit length 
scaling system. A simple measure of 
collinearity is to inspect the off-diagonal 
elements of X'X matrix. 

 The off-diagonal elements of 
X'Xvalues are greater than 0.9718 and all 
thesesvalues are closed to oneso it can be 
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conformed that strong collinearity exists 
among the regressors. 

(b) VIF Analysis: The diagonal elements of 
(X'X)-1 is called VIF and it is used to measure 
the collinearity. The diagonal elements of 
(X'X)-1are 28.7508, 38.2249, 34.2826, 
36.1997, 35.1739. 

The diagonal elements are greater than 5 
and in respect of these values the collinearity is 
conformed among the regressors. 

(c) Conditional Index Number Analysis: The 
condition index numbers Ki of the matrix X'X 
is given in table - 1. 

Table 1: Eigenvalue and Condition Index 
Numbers for Simulation Data. 

Eigen 
Value 

1 = 
4.903 

2 = 
0.031 

3 = 
0.026 

4 = 
0.024 

5 = 
0.017 

Ki K1 = 
1.0 

K2 = 
158.3 

K3 = 
189.3 

K4 = 
207.2 

K5 = 
290.8 

The above table the maximum condition index 
number is 290.8. This shows that the regressors 
are strongly correlated. The Eigen system 
analysis also one of the indication of 
collinearity among the regressors. 

(d) Variance-Decomposition Analysis: Using Belsey, etc., (1980) method the condition indices for 
the data set is given in table -2. 

            Table 2: The variance-decomposition proportions  

Number Eigenvalue Condition 
Indices 

X1 X2 X3 X4 X5 

1 4.90259 2.21418 0.00141 0.00107 0.00119 0.00113 0.00116 

2 0.03098 0.17601 0.59545 0.05966 0.02798 0.07116 0.26569 

3 0.02590 0.16094 0.03873 0.01072 0.67422 0.37130 0.01504 

4 0.02366 0.15383 0.33143 0.46041 0.00013 0.13048 0.29576 

5 0.01687 0.12988 0.032998 0.46815 0.29649 0.42594 0.42237 

 

If any of the variance-decomposition proportion 
greater than 0.5 are recommended guidelines. In 
variance-decomposition proportion 21 and 33 are 
greater than 0.5. This means 

 

that second and third singular values are 
associated with the collinearity that is 

inflating the variances of 1  and 3 .  
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Ordinary Least Squares Results for Monte Carlo Simulation Data 

Analysis of Variance 
Source            DF      SS        MS        F         P 
Regression        5     79.002     15.800     634.60    0.000 
Residual Error    94      2.340      0.025 
Total             99     81.343 
 
S = 0.157792        R-Sq = 97.1% R-Sq(adj) = 97.0% 
Predictor       Coef     SE Coef         T            P      
Constant      -0.0044 0.0166     -0.26     0.794 
 X1           0.2334   0.0943      2.48     0.015   
 X2           0.2107    0.1067      1.98     0.051 
 X3          0.1145  0.0998      1.15     0.254 
 X4           0.1411    0.1057      1.34     0.185 
 X5           0.2961    0.1055      2.81     0.006   

From the above ANOVA table the estimated F 
value is 634.6 (P=0.000) and R2 is 97%. 
According to these results it cannot be concluded 
that this OLS model is significant. But, if we 
consider the individualparameter result, the 

constant and variables X2, X3 and X4 are not 
significant to the model at 5% level of 
significance. This problem was occurred because 
of the collinearity among the regressors.        

Macroeconomic Impact of Foreign Direct 
Investment (MIFDI) Data  

Based on Sun (1998, 2001) theory a 
Macroeconomic Impact of Foreign Direct 
Investment Data were collected in Sri Lanka 
from 1978 to 2004 to analyze the collinearity 
problems. This data set consists one dependent 
variable (Total Domestic Investment) and four 
independent variables (Foreign Direct 
Investment, Gross Domestic Product Per Capita, 
Exchange Rate and Interest Rate). This data set 
is time series, therefore the five variables should 
be analyzed to find whether all variables are 
following common trend with same order. For 
this purpose the unit root test is tested. At 1% 
level of significance all five variables are 

cointegrated to same order of integration 
coefficients 1. 

The next test is to be tested that, the linear 
model of selected variables is the 
homoskedasticity (i.e., constant error variance). 
For this analysis the Durbin-Watson test is 
carried out. The estimated Durbin-Watson value 
for this data set is 2.0131. The critical lower (dl) 
and upper (du) values at 1% significance level is 
dl = 0.878 and du = 1.515 (for sample size 27 and 
regressors 4), respectively. The estimated value 
for this model lies between du and 4-du, hence, it 
can be conformed that at the 1% level of 
significance there is no autocorrelation. 
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Collinearity Results and Analysis for MIFDI 
Data  

(a) Correlation Analysis: Correlation between 
the variables are 0.59016 -0.66621, -0.58280, -
0.93693, -0.96745 and 0.90446. From these 
values it can be said that strong positive and 
negative correlation exists among regressors. 
Hence, it is confirmed that collinearity exists 
among the regressors. 

(b) VIF Analysis: The diagonal elements of 
(X'X)-1 is used to measure the VIF and the 
values are 1.83902, 23.7106, 9.78299, 15.7075 
and it is given below.  

From the above result three diagonal values 
are greater than 5. This is an indication of 
collinearity present among the regressors.    

(c) Conditional Index Analysis: The eigenvalues and condition index numbers of X'X are given in 
table - 3. 

Table 3: Eigenvalues and conditional index numbers for MIFDI Data 

Eigen Value 1 = 5623.84 2 = 21.39 3 = 5.72 4 = 0.18 

Condition Index K1 = 1 K2 = 262.92 K3 = 983.19 K4 = 31243.56 

From the above table it can be confirmed that strong collinearity exists among regressors. 

From the above overall collinearity analysis for MIFDI data it can be said that strong collinearity 
among the independent variables.  

Ordinary Least Squares Results for MIFDI Data 
Analysis of Variance 
Source            DF          SS         MS          F          P 
Regression        4        3.3779     0.8445  91.42    0.000 
Residual Error    22       0.2032     0.0092 
Total             26       3.5811 
 
S = 0.0961092      R-Sq = 94.3% R-Sq(adj) = 93.3% 
 
Predictor     Coef      SE Coef          T            P    
Constant      4.179     4.3670       0.96      0.349 
FDIR         0.0864     0.0278       3.11      0.005    
GDPPCR     0.8886     0.3031       2.93      0.008   
EXR         -0.6558     0.3000      -2.19     0.040 
IRR          0.1501     0.1221       1.23      0.232 

From the above ANOVA table the F value is 
91.42 (P=0.000) and R2 is 94.3%. Based on these 
results it cannot be confirmed that this OLS 

individual parameter results, the constant and 
variables EXR and IRR are not significant to the 
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model at 5% level of significance. This occurred 
because of the collinearity among the regressors. 

It is confirmed that the collinearity exists 
in the above simulation and MIFDI data sets. 
Hence, the alternative way to reduce or avoid the 
collinearity is to use biased estimator instead of 
using unbiased (OLSE) estimator. In this 
research paper the biased ORRE is suggested to 
use to fit the model and compare the stochastic 
properties of OLSE with ORRE.  The stochastic 
properties are given in table  4.   

Stochastic Properties Analysis for Simulation 
Data 

As mentioned in section 4.3, the ridge regression 
linear model is used to fit regression model for 
the simulation data. The biasing parameter is 
estimated for this data set and k = 0.023. The 
stochastic properties such as coefficient of 
determination, mean squared error of the model 
and scalar mean squared error of the estimator of 
OLSE and ORRE for the simulation data are 
given below table - 4.   

Table-4: OLSE and RRE Stochastic Properties in 
Simulation Data 

Stochastic Property OLSE ORRE 

R2 0.971 0.971 

2 0.0249 0.00031 

scalar mse(estimator) 0.0528 0.0099 

Considering the above stochastic 
properties R2 is same for both estimators whereas 

2 and scalar mse(estimator) for OLSE is higher 
than that of ORRE. Hence, the ORRE is better 
than the OLSE.      

The 95% confidence interval and confidence 
width of OLSE and ORRE are given below table -
5.  

 

Table - 5: 95% CI for OLSE and RRE in Simulation Data 

OLSE ORRE 

Parameter 95% CI CI Width Parameter 95% CI CI Width 

-0.00435 [-0.03695, 0.02825] 0.0652 -0.00436 [-0.00798, -0.00075] 0.00723 

0.23343 [0.04862, 0.41824] 0.3696 0.23382 [0.21347, 0.25417] 0.04070 

0.21074 [0.00169, 0.41979] 0.4810 0.20791 [0.18490, 0.23092] 0.04602 

0.11446 [-0.08109, 0.31002] 0.3911 0.11639 [0.09482, 0.13797] 0.04315 

0.14415 [-0.06605, 0.34834] 0.4144 0.14229 [0.12013, 0.16569] 0.04556 

0.28610 [0.08922, 0.50297] 0.4238 0.29474 [0.27188, 0.31761] 0.04573 

Considering the 95% CI and confidence 
width the OLSE has wider confidence interval 
and large width respectively than that of ORRE. 

Therefore, ORRE is better estimator compare 
with OLSE for this data set.     
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The next stochastic property analysis is the 
mean squared error matrix of the OLSE and 
ORRE. The difference between the matrix mean 
squared error of OLSE and ORRE was estimated 
and the result shows that non-negative definite 
matrix. This mean the estimator ORRE is better 
than OLSE for this collinearity data set.   

Stochastic Properties Analysis for MIFDI Data 

The stochastic properties R2, 2 and scalar 
mse(estimator) of OLSE and ORRE for the 
MIFDI data are given below table - 6.   

Table - 6: OLSE and RRE Stochastic Properties 
in MIFDI Data 

Stochastic Property OLSE ORRE 

R2 0.943 0.941 
2 0.00924 0.0096 

scalar mse(estimator) 19.2754 15.9734 

In the above table the stochastic properties R2 and 
2 are approximately same for both estimators, 

whereas the property scalar mse(estimator) for 
OLSE is higher than that of ORRE in MIFDI 
data, this means ORRE better than the OLSE to 
fit the model for this collinearity data set.  

The 95% CI and confidence width were 
also studied for OLSE and ORRE, the results 
show that the OLSE has wider confidence 
interval and confidence width than the ORRE. 
Hence, it can be said that ORRE is better 
estimator compare with OLSE to fit model for 
MIFDI data set.     

Finally, matrix mean squared error of 
OLSE and ORRE are analyzed for MIFDI data 
set. The difference between the matrix mean 
squared error of OLSE and ORRE was obtained 

and the output shows that non-negative definite 
matrix.    

From the above overall stochastic properties 
analysis for OLSE and ORRE in both collinerity 
data sets it is confirmed that ORRE is better than 
that of OLSE when collinearity present among 
the regressors. Therefore, when collinearity 
presents among the regressors the most suitable 
estimator to fit the model is biased estimators. 

Comments 

Two independent collinearity data sets were 
analyzed for the purpose of studying the problems 
of collinearity among the regressors. The 
diagnosing and dealing methods for collinearity 
problems discussed in this paper are very useful 
to detect collinearity in the real data analysis.  

Although ordinary least squares estimator is 
best linear unbiased estimator (BLUE) in the 
class of best linear unbiased estimators it is not a 
suitable method to fit regression model when 
collinearity presents among the regressors. An 
appropriate and most suitable method to fit 
regression model for collinearity data is biased 
estimation. The popular and useful biased 
estimation is ridge type estimators.   
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